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0 Prologue

0.1 The Language of Set Theory

The empty set is denoted by ∅, and the family of all subsets of a set X is denoted by P(X):

P(X) = {E : E ⊆ X}.

If E is a family of sets, we can form the union and intersection of its members:⋃
E∈E

E = {x : x ∈ E for some E ∈ E}⋂
E∈E

E = {x : x ∈ E for all E ∈ E}

Usually, it is more convenient to consider indexed families of sets:

E = {Eα : α ∈ A} = {Eα}α∈A′

in which case the union and intersection are denoted by⋃
α∈A

Eα,
⋂
α∈A

Eα.

If Eα ∩ Eβ = ∅ whenever α ̸= β, the sets Eα are called disjoint.

When considering families of sets indexed by N, our notation will be

{En}∞n=1 or {En}∞1 ,

and likewise or unions and intersections. In this case, the notions of limit superior and limit inferior are

sometimes useful:

lim supEn =

∞⋂
k=1

∞⋃
n=k

En, lim inf En =

∞⋃
k=1

∞⋂
n=k

En.

If E and F are sets, we denote their difference by E \ F :

E \ F = {x : x ∈ E and x ̸∈ F},

and their symmetric difference by E∆F :

E∆F = (E \ F ) ∪ (F \ E).

When it is clearly understood that all sets in questions are subsets of a fixed setX, we define the complement

Ec of a set E (in X):

Ec = X \ E.

In this situation we have deMorgan’s laws:(⋃
α∈A

Eα

)c

=
⋂
α∈A

Ec
α,

(⋂
α∈A

Eα

)c

=
⋃
α∈A

Ec
α.

If X and Y are sets, their Cartesian product X × Y is the set of all ordered pairs (x, y) such that

x ∈ X and y ∈ Y . A relation from X to Y is a subset of X × Y . (If Y = X, we speak of a relation on X.)

If R is a relation from X to Y , we shall sometimes write xRy to mean that (x, y) ∈ R. The most important

types of relations are the following:
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� Equivalence relations: An equivalence relation on X is a relation R on X such that

xRx for all x ∈ X,

xRy iff yRx,

xRz whenever xRy and yRz for some y.

The equivalence class of an element x is {y ∈ X : xRy}. X is the disjoint union of these equivalence

classes.

� Orderings. See §0.2.

� Mappings. A mapping f : X → Y is a relation R from X to Y with the property that for every x ∈ X

there is a unique y ∈ Y such that xRy, in which case we writ y = f(x). Mappings are sometimes called

maps or functions;

If f : X → Y and g : Y → Z are mappings, we denote by g ◦ f their composition:

g ◦ f : X → Z, g ◦ f(x) = g(f(x)).

If D ⊂ X and E ⊂ Y , we define the image of D and the inverse image of E under a mapping f : X → Y

by

f(D) = {f(x) : x ∈ D}, f−1(E) = {x : f(x) ∈ E}.

It is easily verified that the map f−1 : P(Y ) → P(X) defined by the second formula commutes with union,

intersections, and complements:

f−1

(⋃
α∈A

)
=
⋃
α∈A

f−1(Eα), f−1

(⋂
α∈A

)
=
⋂
α∈A

f−1(Eα), f−1(Ec) =
(
f−1(E)

)c
.

(The direct image mapping f : P(X) → P(Y ) commutes with unions, but in general not with intersections

or complements.)

If f : X → Y is mapping. X is called the domain of f and f(X) is called the range of f . f is said to be

injective if f(x1) = f(x2) only when x1 = x2, surjective if f(X) = Y , and bijective if is both injective

and surjective. If f is bijective, it has an inverse f−1 : Y → X such that f−1 ◦ f and f ◦ f−1 are the identity

mappings on X and Y , respectively. If A ⊂ X, we denote by f | A the restriction of f to A:

(f | A) : A → Y, (f | A)(x) = f(x) for x ∈ A.

A sequence in a set X is a mapping from N into X. (We also use the term finite sequence to mean

a map from {1, . . . , n} into X where n ∈ N.) If f : N → X is sequence and g : N → N satisfies g(n) < g(m)

whenver n < m, the composition f ◦ g is called a subsequence of f .

If {Xα}α∈A is an indexed family of sets, their Cartesian product
∏

α∈A Xα is the set of all maps

f : A →
⋃

α∈A Xα such that f(α) ∈ Xα for every α ∈ A. If X =
∏

α∈A Xα and α ∈ A, we define the αth

projection or coordinate map πα : X → Xα by πα(f) = f(α). We also frequently write x and xα instead

of f and f(α) and call xα the αth coordinate of x. If the sets Xα are all equal to some fixed set Y , we

denote
∏

α∈A Xα by Y A

Y A = the set of all mappings from A to Y .

If A = {1, . . . , n}, Y A is denoted by Y n and may be identified with the set of ordered n-tuples of elements

of Y .
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0.2 Orderings

A partial ordering on a nonempty set X is a relation R on X with the following properties:

(i) if xRy and yRz, then xRz;

(ii) if xRy and yRx, then x = y;

(iii) xRx for all x.

If R also satisfies

(iv) if x, y ∈ X, then either xRy or yRx,

then R is called a linear (or total) ordering. We observe that a partial ordering on X naturally induces a

partial ordering on every nonempty subset of X. Two partially ordered sets X and Y are said to be order

isomorphic if there is a bijection f : X → Y such that x1 ≤ x2 if and only if f(x1) ≤ f(x2).

If X is partially ordered by ≤, a maximal (resp. minimal) element of X is an element x ∈ X such

that the only y ∈ X satisfying x ≤ y (resp. x ≥ y) is x itself. Maximal and minimal elements may not exist,

and they need not be unique unless the ordering is linear. If E ⊆ X, an upper (resp. lower) bound for

E is an element x ∈ X such that y ≤ x (resp. x ≤ y) for all y ∈ E. An upper bound for E need not be an

element of E, and unless E is linearly ordered, a maximal element of E need not be an upper bound for E.

If X is linear ordered by ≤ and every nonempty subset of X has a (necessarily unique) minimal element,

X is said to be well ordered by ≤, and ≤ is called a well ordering on X. For example, N is well ordered

by its natural ordering.

0.1 Proposition (The Hausdorff Maximal Principle). Every partially ordered set has a maximal linearly

ordered subset.

0.2 Lemma (Zorn’s Lemma). If X is a partially ordered set and every linearly ordered subset of X has an

upper bound, then X has a maximal element.

0.3 Theorem (The Well Ordering Principle). Every nonempty set X can be well ordered.

0.4 Theorem (The Axiom of Choice). If {Xα}α∈A is a nonempty collection of nonempty sets, then
∏

α∈A Xα

is nonempty.

0.5 Corollary. If {Xα}α∈A is a disjoint colletion of nonempty sets, there is a set Y ⊂α∈A Xα such that

Y ∩Xα contains precisely one element for each α ∈ A.

0.3 Cardinality

If X and Y are nonempty sets, we define the expressions

card(X) ≤ card(Y ), card(X) = card(Y ), card(X) ≥ card(Y )

to mean that exists f : X → Y which is injective, bijective, or surjective, respectively. We also define

card(X) < card(Y ), card(X) > card(Y )

to mean that there is an injection but no bijection, or a surjection but no bijection from X to Y . These

relationships can be extended to the empty set by declaring that

card(∅) < card(X) and card(X) > card(∅) for all X ̸= ∅.

For the remainder of this section, we assume implicitly that all sets in question are nonempty in order to

avoid special arguments for ∅.
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0.6 Proposition. card(X) ≤ card(Y ) if and only if card(Y ) ≥ card(X).

0.7 Proposition. For any sets X and Y , either card(X) ≤ card(Y ) or card(Y ) ≤ card(X).

0.8 Theorem (The Schröder-Bernstein Theorem). If card(X) ≤ card(Y ) and card(Y ) ≤ card(X), then

card(X) = card(Y ).

0.9 Proposition. For any set X, card(X) < card(P(X)).

A set X is called countable (or denumerable) if card(X) ≤ card(N). In particular, all finite sets are

countable, and for these it is convenient to interpret “card(X)” as the number of elements in X:

card(X) = n ⇐⇒ card(X) = card({1, . . . , n}).

If X is countable but not finite, we say that X is countably infinite.

0.10 Proposition.

(i) If X and Y are countable, so is X × Y .

(ii) If A is countable and Xα is countable for every α ∈ A, then
⋃

α∈A Xα is countable.

(iii) If X is countably infinite, then card(X) = card(N).

0.11 Corollary. Z and Q are countable.

A set X is said to have the cardinality of the continuum if card(X) = card(R). We shall use the

letter c as an abbreviation for card(R):

card(X) = c ⇐⇒ card(X) = card(R).

0.12 Proposition. card(P(N)) = c.

0.13 Corollary. If card(X) ≥ c, then X is uncountable.

0.14 Proposition.

(i) If card(X) ≤ c and card(Y ) ≤ c, then card(X × Y ) ≤ c.

(ii) If card(A) ≤ c and card(Xα) ≤ c for all α ∈ A, then card
(⋃

α∈A

)
≤ c.

0.4 More about Well Ordered Sets

Let X be a well ordered set. If A ⊆ X is nonempty, A has a minimal element, which is its maximal lower

bound or infimum; we shall denote it by inf A. If A is bounded above, it also has a minimal upper bound

or supremum, denoted by supA. If x ∈ X, we define the initial segment of x to be

Ix = {y ∈ X : y < x}.

The elements of Ix are called predecessors of x.

0.15 Proposition (The Principle of Transfinite Induction). Let X be a well ordered set. If A is a subset

such that x ∈ A whenever Ix ⊂ A, then A = X.

0.16 Proposition. If X is a well ordered and A ⊂ X, then
⋃

x∈A Ix is either an initial segment or X itself.
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0.17 Proposition. If X and Y are well ordered, then either X is order isomorphic to Y , or X is order

isomorphic to an initial segment in Y , or Y is order isomorphic to an initial segment in X.

0.18 Proposition. There is an uncountable well ordered set Ω such that Ix is countable for each x ∈ Ω. If

Ω′ is another set with the same properties, then Ω and Ω′ are order isomorphic.

The set Ω in Proposition 0.18, which is essentially unique qua well ordered set, is called the set of

countable ordinals.

0.19 Proposition. Every countable subset of Ω has an upper bound.

It is sometimes convenient to add an extra element ω1 to Ω to form a set Ω∗ = Ω ∪ {ω1} and to extend

the ordering on Ω to Ω∗ by declaring that x < ω1 for all x ∈ Ω. ω1 is called the first uncountable ordinal.

0.5 The Extended Real Number System

It is frequently useful to adjoin two extra points ∞ and −∞ to R to form the extended real number

system R = R ∪ {−∞,∞}, and to extend the usual ordering on R by declaring that −∞ < x < ∞ for

all x ∈ R. The completeness of R can be stated as follows: every subset A of R has a least upper bound,

or supremum, and a greatest lower bound, or infinimum, which are denoted by supA and inf A. If

A = {a1, . . . , an}, we also write

max(a1, . . . , an) = supA, min(a1, . . . , an) = inf A.

From completeness it follows that every sequence {xn} in R has a limit superior and a limit inferior:

lim supxn = inf
k≥1

(
sup
n≥k

xn

)
, lim inf xn = sup

k≥1

(
inf
n≥k

xn

)
.

The sequence {xn} converges (in R) if and only if these two numbers are equal (and finite), in which case its

limit is their common values. One can also define lim sup and lim inf for functions f : R → R for instance:

lim sup
x→a

f(x) = inf
δ>0

(
sup

0<|x−a|<δ

f(x)

)
.

The arithmetical operations on R can be partially extended to R:

x±∞ = ±∞(x ∈ R), ∞+∞ = ∞, −∞−∞ = −∞,

x · (±∞) = ∞(x > 0), x · (±∞) = ∓∞(x < 0).

We make no attempt to define ∞−∞, but we abide by the convention that, unless otherwise stated,

0 · (±∞) = 0.

We employ the following notation for intervals in R: if −∞ ≤ a < b ≤ ∞,

(a, b) = {x : a < x < b}, [a, b] = {x : a ≤ x ≤ b},
(a, b] = {x : a < x ≤ b}, [a, b) = {x : a ≤ x < b}

We shall occasionally encounter uncountable sums of nonnegative numbers. If X is an arbitrary set and

f : X → [0,∞], we define
∑

x∈X f(x) to be supremum of its finite partial sums:

∑
x∈X

f(x) = sup

{∑
x∈F

f(x) : F ⊂ X,F finite

}
.
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0.20 Proposition. Given f : X → [0,∞], let A = {x : f(x) > 0}. If A is uncountable, then
∑

x∈X f(x) =

∞. If A is countably infinite, then
∑

x∈X f(x) =
∑∞

1 f(g(n)) where g : N → A is any bijection and the sum

on the right is an ordinary infinite series.

Some terminology concerning (extended) real-valued functions: A relation between numbers that is

applied to functions is understood to hold pointwise. Thus f ≤ g means that f(x) ≤ g(x) for every x,

and max(f, g) is the function whose value at x is max(f(x), g(x)). If X ⊂ R and f : X → R, f is called

increasing if f(x) ≤ f(y) whenver x ≤ y and strictly increasing if f(x) < f(y) whenever x < y; similarly

for decreasing. A function that is either increasing or decreasing is called monotone.

If f : R → R is an increasing function, then f has right- and left-hand limits at each point:

f(a+) = lim
x⧹a

f(x) = inf
x>a

f(x), f(a−) = lim
x⧸a

f(x) = sup
x<a

f(x).

Moreover, the limiting values f(∞) = supa∈R f(x) and f(−∞) = infa∈R f(x) exist (possibly equal to ±∞).

f is called right continuous if f(a) = f(a+) for all a ∈ R and left continuous if f(a) = f(a−) for all

a ∈ R.
For points x in R or C, |x| denotes the ordinary absolute value or modulus of x, |a+ ib| =

√
a2 + b2. For

points x in Rn or Cn, |x| denotes the Euclidean norm:

|x| =

[
n∑
1

|xj |2
]1/2

.

We recall that a set U ⊂ R is open if, for every x ∈ U , U includes an interval centered at x.

0.21 Proposition. Every open set in R is a countable disjoint union of open intervals.

0.6 Metric Spaces

A metric on a set X is a function ρ : X ×X → [0,∞) such that

� ρ(x, y) = 0 if and only if x = y;

� ρ(x, y) = ρ(y, x) for all x, y ∈ X;

� ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X.

(Intuitively, ρ(x, y) is to be interpreted as the distance from x to y.) A set equipped with a metric is called

a metric space. Some examples:

(i) The Euclidean distance ρ(x, y) = |x− y| is a metric on Rn.

(ii) ρ1(f, g) =
∫ 1

0
|f(x) − g(x)| dx and ρ∞(f, g) = sup0≤x≤1 |f(x) − g(x)| are metrics on the space of

continuous functions on [0, 1].

(iii) If ρ is a metric on X and A ⊂ X, then ρ | (A×A) is a metric on A.

(iv) If (X1, ρ1) and (X2, ρ2) are metric spaces, the product metric ρ on X1 ×X2 is given by

ρ((x1, x2), (y1, y2)) = max(ρ1(x1, y1), ρ2(x2, y2)).

Let (X, ρ) be a metric space. If x ∈ X and r > 0, the (open) ball of radius r about x is

B(r, x) = {y ∈ X : ρ(x, y) < r}.

A set E ⊂ X is open if for every x ∈ E there exists r > 0 such that B(r, x) ⊂ E, and closed if its

complement is open. For example, every ball B(r, x) is open. Also, X and ∅ are both open and closed. The

8



union of any collection of open sets is open, and hence the intersection of any collection of closed sets is

closed. Also, the intersection (resp. union) of any finite collection of open (resp. closed) sets is open (resp.

closed).

If E ⊂ X, the union of all open sets U ⊂ E is the largest open set contained in E, it is called the interior

of E and is denoted by Eo. Likewise, the intersection of all closed sets F ⊃ E is the smallest closed set

containing E; it is called the closure of E and is denoted by E. E is said to be dense in X if E = X,

and nowhere dense if E has empty interior. X is called separable if it has a countable dense subset. A

sequence {xn} in X converges to x ∈ X if limn→∞ ρ(xn, x) = 0.

0.22 Proposition. If X is a metric space, E ⊂ X, and let x ∈ X, the following are equivalent:

(i) x ∈ E;

(ii) B(r, x) ∩ E ̸= ∅ for all r > 0;

(iii) There is a sequence {xn} in E that converges to x.

If (X1, ρ1) and (X2, ρ2) are metric spaces, a map f : X1 → X2 is called continuous at x ∈ X if for

every ϵ > 0 there exists δ > 0 such that ρ2(f(y), f(x)) < ϵ whenever ρ1(x, y) < δ — in other words, such

that f−1(B(ϵ, f(x))) ⊃ B(δ, x). The map f is called continuous if it is continuous as each x ∈ X1 and

uniformly continuous if, in addition, the δ in the definition of continuity can be chosen independent of x.

0.23 Proposition. f : X1 → X2 is continuous if and only if f−1(U) is open in X1 for every open U ⊂ X2.

A sequence {xn} in a metric space (X, ρ) is called Cauchy if ρ(xn, xm) → 0 as n,m → ∞. A subset E

of X is called complete if every Cauchy sequence in E converges and its limit is in E.

0.24 Proposition. A closed subset of a complete metric space is complete, and the complete subset of an

arbitrary metric space is closed.

In a metric space (X, ρ) we can define the distance from a point to a set and the distance between two

sets. Namely, if x ∈ X and E, F ⊂ X,

ρ(x,E) = inf{ρ(x, y) : y ∈ E},
ρ(E,F ) = inf{ρ(x, y) : x ∈ E, y ∈ F} = inf{ρ(x, F ) : x ∈ E}.

Observe that, by Proposition 0.22, ρ(x,E) = 0 if and only if x ∈ E. We also define the diameter of

E ⊂ X to be

diamE = sup{ρ(x, y) : x, y ∈ E}.

E is called bounded if diamE < ∞.

If E ⊂ X and {Vα}α∈A is a collection of sets such that E ⊂
⋃

α∈A Vα, {Vα}α∈A is called a cover of E,

and E is said to be covered by the Vα’s. E is called totally bounded if, for every ϵ > 0, E can be covered

by finitely many balls of radius ϵ. Every totally bounded set is bounded. (The converse is false in general.)

If E is totally bounded, so is E, for it is easily seen that if E ⊂
⋃n

1 B(ϵ, zj), then E ⊂
⋃n

1 B(2ϵ, zj).

0.25 Theorem. If E is a subset of the metric space (X, ρ), the following are equivalent:

(i) E is complete and totally bounded.

(ii) (The Bolzano-Weierstrass Property) Every sequence in E has a subsequence that converges to a

point of E.

(iii) (The Heine-Borel Property) If {Vα}α∈A is a cover of E by open sets, there is a finite set F ⊂ A

such that {Vα}α∈F covers E.
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A set E that posses the properties (i)-(iii) of Theorem 0.25 is called compact. Every compact set is

closed (by Proposition 0.22) and bounded; the converse is false in general but true in Rn.

0.26 Proposition. Every closed and bounded subset of Rn is compact.

Two metrics ρ1 and ρ2 on a set X are called equivalent if

Cρ1 ≤ ρ2 ≤ C ′ρ1 for some C,C ′ > 0.

It is easily verified that equivalent metrics define the same open, closed, and compact sets, the same conver-

gent and Cauchy sequences, and the same continuous and uniformly conntinuous mappins. Consequently,

most results concerning metric spaces depend not on the particular metric chosen but only on its equivalence

class.

1 Measures

1.1 Introduction

This section was skipped.

1.2 σ-Algebras

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A of subsets of X that is closed

under finite unions of complements; in other words, if E1, . . . , En ∈ A, then
⋃n

1 Ej ∈ A; and if E ∈ A, then

Ec = A. A σ-algebra is an algebra that is closed under countable unions.

We observe that since
⋂

j Ej =
(⋃

j E
c
j

)c
, algebras (resp. σ-algebras) are also closed under finite (resp.

countable) intersections. Moreover, if A is an algebra, then ∅ ∈ A and X ∈ A, for if E ∈ A we have

∅ = E
⋂
Ec and X = E

⋃
Ec.

It is worth noting that an algebra A is an σ-algebra provided that is is closed under countable disjoint

unions. Indeed, suppose {Ej}∞1 ⊂ A. Set

Fk = Ek \

[
k−1⋃
1

Ej

]
= Ek ∩

[
k−1⋃
1

Ej

]c
.

Then the Fk’s belong to A and are disjoint, and
⋃∞

1 Ej =
⋃∞

1 Fk.

Some examples: If X is any set, P(X) and {∅, X} are σ-algebras. If X is uncountable, then

A = {E ⊂ X : E is countable or Ec is countable}

is a σ-algebra called the σ-algebra of countable or co-countable sets. It is trivial to verify that the

intersection of any family of σ-algebras on X is again a σ-algebra. It follows that if E is any subset of P(X),

there is a unique smallest σ-algebra M(E) containing E , namely, the intersection of all σ-algebras containing

E . (There is always at least one such, namely, P(X).) M(E) is called that σ-algebra generated by E .

1.1 Lemma. If E ⊂ M(F), then M(E) ⊂ M(F).

IfX is any metric space, or more generally any topological space, the σ-algebra generated by the collection

of open sets in X is called the Borel σ-algebra on X and is denoted by BX . Its members are called Borel

sets. BX thus includes open sets, closed sets, countable intersections of open sets, countable unions of closed

sets, and so forth.
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1.2 Proposition. BR is generated by each of the following:

(i) the open intervals: E1 = {(a, b) : a < b},
(ii) the closed intervals: E2 = {[a, b] : a < b},
(iii) the half-open intervals: E3 = {(a, b] : a < b} or E4 = {[a, b) : a < b},
(iv) the open rays: E5 = {(a,∞] : a ∈ R} or E6 = {(−∞, a) : a ∈ R},
(v) the closed rays: E7 = {[a,∞) : a ∈ R} or E8 = {(−∞, a] : a ∈ R}.

Let {Xα}α∈A be an indexed collection of nonempty sets, X =
∏

α∈A Xα, and πα : X → Xα the coordinate

maps. If Mα is a σ-algebra on Xα for each α, the product σ-algebra on X is the σ-algebra generated by

{π−1
α (Eα) : Eα ∈ Mα, α ∈ A}.

We denote this σ-algebra by
⊗

α∈A Mα. (If A = {1, . . . , n} we also write
⊕n

1 Mj or M1

⊕
· · ·
⊕

Mn.)

1.3 Proposition. If A is countable, then
⊗

α∈A Mα is the σ-algebra generated by {
∏

α∈A Eα : Eα ∈ Mα}.

1.4 Proposition. Suppose that Mα is generated by Eα, α ∈ A. Then
⊗

α∈A Mα is generated by F1 =

{π−1
α (Eα) : Eα ∈ Eα, α ∈ A}. If A is countable and Xα ∈ Eα for all α,

⊗
α∈A Mα is generated by

F2 = {
∏

α∈A Eα : Eα ∈ Eα}.

1.5 Proposition. Let X1, . . . , Xn be metric spaces and let X =
∏n

1 Xj , equipped with the product metric.

Then
⊗n

1 BXj
⊂ BX . If the Xj ’s are separable, then

⊗n
1 BXj

= BX .

1.6 Corollary. BRn =
⊗n

1 BR.

We define an elementary family to be a collection E of subsets of X such that

(i) ∅ ∈ E ;
(ii) if E,F ∈ E , then E ∩ F ∈ E ;
(iii) if E ∈ E , then Ec is a finite disjoint union of members of E .

1.7 Proposition. If E is an elementary family, the collection A of finite disjoint unions of members of E is

an algebra.

1.3 Measures

Let X be a set equipped with a σ-algebra M. A measure on M (or on (X,M), or simply on X if M is

understood) is a function µ : M → [0,∞] such that

(i) µ(∅) = 0,

(ii) if {Ej}∞1 is a sequence of disjoint sets in M, then µ (
⋃∞

1 Ej) =
∑∞

1 µ(Ej).

Property (ii) is called countable additivity. It implies finite additivity:

(ii′) if E1, . . . , En are disjoint sets in M, then µ(
⋃n

1 Ej) =
∑n

1 µ(Ej).

because one can take Ej = ∅ for j > n. A function µ that satisfies (i) and (ii′) but not necessarily (ii) is

called a finitely additive measure.

If X is a set M ⊂ P(X) is σ-algebra, (X,M) is called a measurable space and the sets in M are

called measurable sets. If µ is a measure on (X,M), then (X,M, µ) is called a measure space.

Let (X,M, µ) be a measure space. If µ(X) < ∞, µ is called finite. If X =
⋃∞

1 Ej where Ej ∈ M and

µ(Ej) < ∞ for all j, µ is called σ-finite. More generally, if E =
⋃∞

1 Ej where Ej ∈ M and µ(Ej) < ∞ for

all j, the set E is said to be σ-finite for µ. If for each E ∈ M with µ(E) = ∞ there exists F ∈ M with

F ⊂ E and 0 < µ(F ) < ∞, µ is called semifinite. Every σ-finite measure is semifinite but not conversely.
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Let us examine a few examples of measures.

� Let X be any nonempty set, M = P(X), and f any function from X to [0,∞]. Then f determines a

measure µ on M by the function µ(E) =
∑

x∈E f(x). The reader may verify that µ is semifinite if and

only if f(x) < ∞ for every x ∈ X, and µ is σ-finite if and only if µ is semifinite and {x : f(x) > 0} is

countable. Two special cases are of particular significance: If f(x) = 1 for all x, µ is called counting

measure; and if, for some x0 ∈ X, f is defined by f(x0) = 1 and f(x) = 0 for x ̸= x0, µ is called the

point mass or Dirac measure at x0.

� Let X be an uncountable set, and let M be the σ-algebra of countable or co-countable sets. The

function µ on M defined by µ(E) = 0 if E is countable and µ(E) = 1 if E is co-countable is easily

seen to be a measure.

� Let X be an infinite set and M = P(X). Define µ(E) = 0 if E is finite, µ(E) = ∞ if E is infinite.

Then µ is a finitely additive measure but not a measure.

1.8 Theorem. Let (X,M, µ) be a measure space.

(i) (Monotonicity) If E,F ∈ M and E ⊂ F , then µ(E) ≤ µ(F ).

(ii) (Subadditivity) If {Ej}∞1 ⊂ M, then µ(
⋃∞

1 Ej) ≤
∑∞

1 µ(Ej).

(iii) (Continuity from below) If {Ej}∞1 ⊂ M and E1 ⊂ E2 ⊂ · · · , then µ(
⋃∞

1 Ej) = limj→∞ µ(Ej).

(iv) (Continuity from above) If {Ej}∞1 ⊂ M and E1 ⊃ E2 ⊃ · · · , then µ(
⋂∞

1 Ej) = limj→∞ µ(Ej).

If (X,M, µ) is a measure space, a set E ∈ M such that µ(E) = 0 is called null set. By subadditivity,

any countable union of null sets is a null set. If a statement about points x ∈ X is true except for x in some

null set, we say that it is true almost everywhere, or for almost every x. (If more precision is needed,

we shall speak of a µ-null set, or µ-almost everywhere).

If µ(E) = 0 and F ⊂ E, then µ(F ) = 0 by monotonicity provided that F ∈ M, but in general it need

not be true that F ∈ M. A measure whose domain includes all subsets of null sets is called complete.

1.9 Theorem. Suppose that (X,M, µ) is a measure space. Let N = {N ∈ M : µ(N) = 0} and M =

{E ∪ F : EM and F ⊂ N for some N ∈ N}. Then M is a σ-algebra, and there is a unique extension µ of

µ to a complete measure on M.

The measure µ in Theorem 1.9 is called the completion of µ, and M is called the completion of M
with respect to µ.

1.4 Outer Measures

An outer measure on a nonempty set X is a function µ∗ : P(X) → [0,∞] that satisfies

(i) µ∗(∅) = 0,

(ii) µ∗(A) ≤ µ∗(B) if A ⊂ B,

(iii) µ∗(
⋃∞

1 Aj) ≤
∑∞

1 µ∗(Aj).

1.10 Proposition. Let E ⊂ P(X) and ρ : E → [0,∞] be such that ∅ ∈ E , X ∈ E and ρ(∅) = 0. For any

A ⊂ X, define

µ∗(A) = inf

{ ∞∑
1

µ(Ej) : Ej ∈ E and A ⊂
∞⋃
1

Ej

}
.

Then µ∗ is an outer measure.
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If µ∗ is an outer measure on X, a set A ∩X is called µ∗-measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) for all E ⊂ X.

The inequality µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac) holds for any A and E, so to prove that A is µ∗-measurable,

it suffices to prove the reverse inequality.

1.11 Theorem (Carathéodory’s Theorem). If µ∗ is an outer measure on X, the collection M of µ∗-

measurable sets is a σ-algebra, and the restriction of µ∗ to M is a complete measure.

If A ⊂ P(X) is an algebra, a function µ0 : A → [0,∞] will be called a premeasure if

(i) µ0(∅) = 0,

(ii) if {Aj}∞1 is a sequence of disjoint sets in A such that
⋃∞

1 Aj ∈ A, then µ0(
⋃∞

1 Aj) =
∑∞

1 µ0(Aj).

In particular, a premeasure is finitely addivite since one can take Aj = ∅ for j large. The notions of finite

and σ-finite premeasures are defined just as for measures. If µ0 is a premeasure on A ⊂ P(X), it induces an

outer measure on X in accordance with Proposition 1.10, namely,

µ∗(A) = inf

{ ∞∑
1

µ∗(Aj) : Aj ∈ A, E ⊂
∞⋃
1

Aj

}
. (1.12)

1.13 Proposition. If µ0 is a premeasure on A and µ∗ is defined by (1.12), then

(i) µ∗ | A = µ0;

(ii) every set in A is µ∗ measureable.

1.14 Theorem. Let A ⊂ P(X) be an algebra, µ0 a premeasure on A, and M the σ-algebra generated by

A. There exists a measure µ on M whose restriction to A is µ0 — namely, µ = µ∗ | M where µ∗ is given

by (1.12). If ν is another measure on M that extends µ0, then ν(E) ≤ µ(E) for all E ∈ M, with equality

where µ(E) < ∞. If µ0 is σ-finite, then µ is the unique extension of µ0 to a measure on M.

1.5 Borel Measures on the Real Line

We begin with a more general construction that yields a large family of measures on R whose domain is

the Borel σ-algebra BR; such measures are called Borel measures on R. To motivate the ideas, suppose

µ is a finite Borel meausre on R, and let F (x) = µ((−∞.xn]). (F is somestimes called the distribution

function of µ.) Then F is increasing by Theorem 1.8(a) and right continuous by Theorem 1.8(d) since

(−∞, x] =
⋂∞

1 (−∞, xn] whenever xn⧹x. Our procedure will be to turn this process around and construcgt

a measure µ starting from an increasing, right-countinuous function F . The special case F (x) = x will yield

the usual “length” measure.

1.15 Proposition. Let F : R → R be increasing and right continuous. If (aj , bj ](j = 1, . . . , n) are disjoint

half-open intervals, let

µ0

(
n⋃
1

(aj , bj ]

)
=

n∑
1

[F (bj)− F (aj)].

and let mu0(∅) = 0. Then µ0 is a premeasure on the algebra A.

1.16 Theorem. If F : R → R is any increasing, right continuous function, there is a unique Borel measure

µF on R such that µF ((a, b]) = F (b) − F (a) for all a, b. If G is another such function, we have µF = µG if

and only if F − G is constant. Conversely, if µ is a Borel measure on R that is finite on all bounded Borel
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sets and we define

F (x) =


µ((0, x]) if x > 0,

0 if x = 0,

−µ((−x, 0]) if x < 0,

then F is increasing and right continuous, and µ = µF .

From the theory of §1.4, for each increasing and right continuous F , we have not only the Borel measure

µF , but a complete measures µF whose domain includes BR. In fact, µF is just the completion of µF and one

can show that its domain is always strictly larger than BR. We shall usually denote this complete measure

also by µF ; is is called the Lebesgue-Stieltjes measure associated to F .

1.17 Lemma. For any E ∈ Mµ,

µ(E) = inf{
∞∑
1

µ((aj , bj)) : E ⊂
∞⋃
1

(aj , bj)}.

1.18 Theorem. If E ∈ Mµ, then

µ(E) = inf{µ(U) : U ⊃ E and U is open}
= sup{µ(U) : K ⊂ E and K is compact}.

1.19 Theorem. If E ⊂ R, the following are equivalent.

(i) E ∈ Mµ.

(ii) E = V \N1 where V is a Gδ set and µ(N1) = 0.

(iii) E = H ∩N2 where H is a Fδ set and µ(N2) = 0.
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